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EDITORIAL COMMENT
Integrated Measure for Atherogenic
Lipoproteins in the Modern Era
Risk Assessment Based on Apolipoprotein B*
Robert S. Rosenson, MD,y Robert A. Hegele, MD,z Antonio M. Gotto, JR, MD, DPHILx
D isorders of insulin resistance (obesity,
metabolic syndrome, and type 2 diabetes)
have resulted in global demographic shifts

in circulating lipid levels characterized by declining
levels of low-density lipoprotein cholesterol (LDL-C).
We advocate that apolipoprotein B (apoB) is a superior
measure of cardiovascular disease (CVD) risk in the
modern era, during which an increasing proportion
of society manifests obesity, pre-diabetes, and type 2
diabetes. Our specific arguments derive from genetics,
population studies, and clinical trials.

CLINICAL MEASURES OF ATHEROGENIC

LIPIDS AND LIPOPROTEINS

The standard lipid measure for atherosclerotic CVD
risk assessment LDL-C guides therapeutic in-
terventions directed at reducing cardiovascular (CV)
events. However, several lines of evidence now argue
against the continued use of LDL-C as a first-line
measure of lipid-related risk.

LDL-C is a calculated value that depends on
the analytic variability of other directly measured
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components, namely total cholesterol (TC), high-
density lipoprotein cholesterol (HDL-C), and tri-
glycerides (TGs). Specifically, LDL-C concentration is
calculated as TC minus very low-density lipoprotein
cholesterol (VLDL-C) (estimated as 20% of the TGs
obtained after an overnight fast) minus HDL-C. In
clinical laboratories, commercially available direct
methods for HDL-C have a coefficient of variation in
hyperlipidemia and CVD patients ranging from�19.8%
to 36.3% for HDL-C and from �26.6% to 31.9% for
LDL-C (1).

Additionally, the biological variability in TGs in-
troduces another source of variation in the estimation
of VLDL-C. Although, the LDL-C calculation is consid-
ered “valid” when TGs are <400 mg/dl, a comparison
of directly measured LDL-C by ultracentrifugation
demonstrates diminished accuracy of the LDL-C
calculation for TGs >200 mg/dl (2). Thus, measure-
ment variability in LDL-C impacts risk assessment and
treatment decisions. Non–HDL-C (TC minus HDL-C)
represents a measure of the cholesterol content in
atherogenic lipoproteins, but is not a measure of par-
ticle concentration.

Measurement of apoB, the major structural protein
on the surface of a heterogeneous pool of atherogenic
lipoproteins with varying content of cholesterol and
TGs, represents the concentration of atherogenic
lipoproteins that encompass VLDL, intermediate-
density lipoprotein, LDL, and lipoprotein (a) parti-
cles (Figure 1). Because 1 apoB is present on a single
atherogenic lipoprotein particle, this measure is not
dependent on compositional changes in the core
neutral lipid content that may impact risk assessment
with LDL-C and non–HDL-C. Due to these limitations
of LDL-C, several professional societies proposed
measuring apoB or LDL particle concentration as an
additional measure for risk assessment after consid-
eration of LDL-C and non–HDL-C (3).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jacc.2015.10.059&domain=pdf
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FIGURE 1 Spectrum of Lipoproteins

(a) B

VLDL

Chylomicron
Remnant

IDL

B

Lp (a)

B

TG

Cholesterol

B-48

Apo

LDL

HDL

A-1

B

non-HDL-C = Total Cholesterol - HDL-C

Non–high-density lipoprotein cholesterol (HDL-C), a derived variable, is the sum of all

cholesterol carried within atherogenic lipoproteins. One molecule of full-length apolipo-

protein B (known as apoB-100) is present on all atherogenic lipoproteins, except for

chylomicron remnants, whose defining shorter B-48 isoform is undetectable by common

laboratory methods. Given these biochemical interconnections, concentrations of apoB and

non–HDL-C are highly correlated. ApoB reflects the total particle number, whereas non–

HDL-C integrates their total cholesterol content. However, correlation of both apoB and

non–HDL-C with a third variable, namely low-density lipoprotein cholesterol (LDL-C), is

more erratic. Box in upper right shows a “generic lipoprotein.” (a) ¼ apo(a); A-1 ¼ apo A-1;

Apo ¼ apolipoprotein; B ¼ apo B-100; IDL ¼ intermediate-density lipoprotein; Lp(a) ¼
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Population-based studies have identified differences
in CVD risk prediction between LDL-C, non–HDL-C,
and apoB. A meta-analysis that included 233,455 par-
ticipants and 22,950 events from 12 independent
studies reported that relative risk (RR) ratios were
lowest for LDL-C (RR: 1.25), intermediate for non–
HDL-C (RR: 1.34), and highest for apoB (RR: 1.43) (4).
Based on differences in CVD events at 10 years, a
treatment strategy that used non–HDL-C would
potentially prevent 300,000 more events than an
LDL-C strategy, and an apoB strategy 500,000 more
than a non–HDL-C strategy.

Discordance analysis is a technique for evaluating
biologically linked variables that are analyzed by
groups of concordance or discordance in their relative
distributions. In the Women’s Health Study, which
included 27,533 healthy women who had 1,070 inci-
dent coronary heart disease (CHD) events after an
average 17.2 years, the prevalence of LDL discordance
defined by medians for non–HDL-C, apoB, and LDL
particle number (LDL-P) was 11.6%, 18.9%, and 24.3%,
respectively (5). Among women with low LDL-C, CHD
events were underestimated compared with non–
HDL-C (age-adjusted hazard ratio [HR]: 2.92), apoB
(HR: 2.48) or LDL-P (HR: 2.32). After multivariable
analysis that included potentially confounding fac-
tors (body mass index, TGs, HDL-C, and diabetes),
CHD risk was underestimated by 30% to 50% for
lipoprotein(a); TG ¼ triglyceride; VLDL ¼ very low-density lipoprotein.
SEE PAGE 193
women with discordant levels. In this issue of the
Journal, Wilkins et al. (6) use discordance analysis
to investigate the association between LDL-C, non–
HDL-C, and apoB on the long-term risk of developing
biomarkers of insulin resistance and coronary artery
calcification (CAC). Their analysis of the CARDIA
(Coronary Artery Disease in Young Adults) study
classified 2,794 participants into low or high apoB,
LDL-C, and non–HDL-C groups defined by the
median of the distribution: apoB (88 mg/dl), LDL-C
(107 mg/dl), and non–HDL-C (121 mg/dl). At year 25,
the odds ratios for CAC (Agatston score >0) were
higher for groups with high apoB regardless of
whether the LDL-C or non–HDL-C was high or low
in multivariable adjusted models that include age,
race, sex and baseline smoking status, systolic blood
pressure, antihypertensive medication use, body
mass index, and diabetes. This discordance analysis
showed that measurement of apoB at a mean age
of 25 years was more predictive of CAC in 18% of
these young adults than LDL-C or non–HDL-C. The
high apoB groups included higher proportions of
ded From: http://content.onlinejacc.org/ by Bradley Bale on 01/1
participants with high glucose, high triglycerides,
and diabetes.

GENETICS

Population studies employing genome-wide associa-
tion and next-generation sequencing consistently
implicate loci that govern plasma LDL-C and TG levels
as among the strongest determinants of CVD risk (7).
Furthermore, aggregated human genetic evidence
supports the clustering of CVD, obesity, and risk
factors such as abnormal lipids and hypertension,
with dozens of genomic regions exerting pleiotropic
effects on these highly interrelated traits (8). ApoB
metabolism is central to the genetic mechanisms
underlying risk, as evidenced in family-based studies
(8). Yet, despite being so inextricably linked, apoB
levels and related traits such as LDL particle size have
yet to undergo large-scale genome-scale analysis,
using such tools as Mendelian randomization or
next-generation deoxyribonucleic acid sequencing.
1/2016
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Such studies are needed to definitively implicate ge-
netic determinants of apoB levels as superior pre-
dictors of CVD risk and of other deleterious outcomes
such as diabetes.

CLINICAL TRIALS

The placebo-controlled AFCAPS/TexCAPS study (Air
Force/Texas Coronary Atherosclerosis Prevention
Study) was the first major statin trial to report that
apoB may be a better predictor of risk for major CV
events than LDL-C. It found that on-treatment
apoB significantly predicted risk, whereas LDL-C did
not (9). Subsequent meta-analyses have generated
divergent findings. One analysis of 8 statin trials,
which included both placebo-controlled studies and
trials of intensive versus standard therapy, found that
the predictive value of on-treatment non–HDL-C was
greater than that of both apoB and LDL-C (10). A
subsequent meta-analysis of 7 placebo-controlled
statin trials found that RR reduction was more
closely related to reductions in apoB than to re-
ductions in either non–HDL-C or LDL-C (11). Another
meta-analysis reported that among statin trials,
decreases in apoB improved CHD prediction, but
this observation did not extend to all cholesterol-
lowering drug classes (12). Due to the heteroge-
neity in obesity and insulin resistance in these
meta-analyses, it is difficult to make a definitive
ntent.onlinejacc.org/ by Bradley Bale on 01/11/2016
statement about whether apoB more accurately pre-
dicts CV risk than LDL-C or non–HDL-C.

In the modern era of overweight and sedentary
individuals with insulin resistance disorders, multi-
ple sources of evidence warrant the transition from
LDL-C and non–HDL-C to more stable and proximal
measures of atherogenic lipoproteins for risk assess-
ment and therapeutic targets (Figure 1). Although
some consensus statements argue that new pro-
spectively designed clinical trials must be per-
formed to validate a biomarker, the conduct of
trials using therapies already proven to reduce CVD
events is neither ethical nor practical. From our
perspective, evaluation of innovative biomarkers
that can be analyzed from stored specimens is an
efficient, cost-effective, and scientifically rigorous
approach to evaluating related measures of athero-
genic lipoproteins, with dual goals of improving
risk assessment calibration and refining targets of
therapy. ApoB is an excellent example of such a
biomarker that may be “ready for prime time” for
numerous reasons, including those outlined by
Wilkins et al. (6).
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